Wafer Surface Preparation for High-Efficiency Solar Cells

I. Kashkoush, G. Chen, D. Nemeth, and J. Rieker Akrion Systems LLC, 6330 Hedgewood Drive, Allentown, PA 18106, USA

ABSTRACT

For the fabrication of high efficiency heterojunction (HIT) solar cells, wafer surface preparation by advanced wet chemical processes is critical in assuring surface qualities for high cell performance

EXPERIMENTAL

■ 156mm PSQ n-type mono-Si wafers processed with fully automated GAMA Solar™ wet station

750

740

730

720 710

700

680

670

660

ed 690

Effect of Pyramid Rounding

- Different PECVD splits were also conducted on some BKM wafers to develop optimum process conditions
- Experimental Splits on Wafer Surface Preparation:
 - BKM (best known method)
 - BKM + enh-R&C (BKM with enhanced rounding and cleaning)
- BKM + enh-R (BKM with enhanced pyramid-rounding) • SDR + BKM (SDR followed by BKM)
- BKM + enh-C (BKM with enhanced post-cleaning)
- SDR + gettering + BKM (SDR followed by metal gettering and then BKM)

- Without SDR, diamond-sawn wafers show noticeably slower texturing etch rates than slurry-sawn wafers
- Adding a separate SDR step reduces the difference in Si loss between the diamond- and slurry-sawn wafers

RESULTS AND DISCUSSION

Effects of Enhanced Clean vs SDR / Metal Gettering

- 650 PECVD Condition Split Akrion's proprietary rounding step smoothens the peak of pyramids
- Wafers with the rounding treatment show improvements in Voc and MCLT
- The optimal PECVD condition can be dependent on the extent of texture rounding

Process	Efficiency Improvement vs. BKM
BKM w/ enh-R or enh-C	2.2 rel%
BKM w/ enh-R&C	2.5 rel%
SDR prior to BKM	4.5 rel%
SDR plus metal gettering prior to BKM	5.2 rel%

- Since the change in Jsc and FF by the additional surface conditioning is marginal, the efficiency improvement can mostly be attributed to the relatively significant increase of Voc
- The results indicate the importance of high degree surface metal removal and bulk metal reduction to increase Voc and, in turn, cell efficiency

CONCLUSIONS

- The quality of wafer surfaces plays a key role in the texturing etch characteristics of Si wafers
- Pre-cleaning and SDR steps are recommended to normalize the surface of different wafers prior to the texturization process
- Final cleaning processes with appropriate pyramid rounding further enhance the cell performance
- Lowering metal signature on the surface and/or in the bulk is beneficial for higher Voc and thus cell efficiency
- Advanced wafer surface preparation integrated with optimized PECVD steps and subsequent flows leads to great improvement of cell performance

