

HF last passivation for high efficiency a-Si:H/c-Si heterojunction solar cells

<u>Adrien Danel</u>, F. Souche, PJ. Ribeyron : INES Y. Le Tiec : LETI T. Nolan : Akrion Systems

A. Danel, UCPSS 2010 - 1

Heterojonction solar cells at INES

125 PSQ, CZ or FZ (100), n-type 1-5 Ohm.cm, PV wafers for 148.5 cm² cells

Surface / Interface is (111) oriented pyramid facets

Impact of practical parameters on cell performance

Outline

Lifetime tests: texturing, cleaning, passivation, intrinsic a-Si:H 40nm

• µPCD map (Semilab) and QSSPC (Sinton, transient mode) :

- → Effective recombination lifetime (τ_{eff})
- → Implied Voc and effective surface recombination velocity (S_{eff}) at 1 sun

✤ HJ cell: 148.5 cm², full process – module compatible

• I(V) under AM 1.5, 100 mW/cm² condition at 25°C :

 \rightarrow solar energy conversion efficiency (η) with Voc, Jsc, FF

1) HF concentration

2) Process time

• A slight degradation is seen, mostly on data taken from the complete full wafer : likely time dependent roughening and contamination issues

 As soon as the deox is achieved, the shorter the better: with HF ≥ 2%, 2 – 5 min long process is recommended

3) Post rinse and drying

For safety reasons, post HF rinse & drying is mandatory in industrial application

Rinse: dump HF-HCl + overflow UPW rinse varied from 5min to 2h

Si (100): 2h stable Si-H $_{\rm x}$ passivation in UPW reported by H. Morita et al, JAP 68, 1272 (1990)

•	Drying:	5min	UPW
---	---------	------	-----

10min hot N2 flow

6min slow drain with IPA vapor + 5min hot N2 (LUCID®)

	η (%)	Jsc (mA /cm²)	Voc (mV)	FF (%)		η (%)	Jsc (mA /cm²)	Voc (mV)	FF (%)		
No rinse	16.9 (0.3)	34.2	678	73.0	Run #1						
		0.1.1		70.0	No rinse & dry	17.2 (0.07)	34.9	677	73.0		
Hot N2	17.0 (0.2)	34.1	683	73.3	IPA & hot N2	17.2 (0.16)	33.4	676	76.6		
	√ No c	ritical is	sue		Run #2	Run #2					
	√ More	data n	eeded		No rinse & dry	18.4 (0.08)	35.1	695	75.4		
for precise numbers					IPA & hot N2	18.3 (0.30)	35.3	696	74.5		

A. Danel, UCPSS 2010 - 6

4) Delay before deposition steps

Passivation tests (QSSPC) : q-time degradation starts at about 30 min

Cell performance : * 5 min to 30 min q-time = no visible impact

✤ 90 min q-time in clean room air = about 5% relative degradation

Q-time	η (%)	Jsc (mA /cm²)	Voc (mV)	FF (%)
< 10 min (ref.)	17.8 (0.2)	34.6	691	74.4
90 min	17.0 (0.2)	34.1	683	73.3

nes

 ✓ Impact depends on RH and on the effectiveness of the previous clean step

D. Graf et al, J. Appl. Phys. 69, 7620 (1991) H. Angerman et al, Solid State Phen. 92, 179 (2003)

5) HF cleanliness (1/2) Metals

5) HF cleanliness (2/2)

Surface contamination by VPD-DC-ICPMS (H. Fontaine, Lett)

E10 at/cm²

	Na	Mg	ΑΙ	K	Ca	Ti	Cr	Fe	Ni	Cu	Zn	Sum
as-textured												
ctl #1	54	2900	370	220	1100	630	95	30080	10	11760	30	47 300
ctl #2	27	1300	26	630	64	200	300	4600	2	1200	21	8 400
ctl #3	65	1100	59	85	69	510	870	13000	8	8400	16	24 200
Texturization + SPM - HF - RCA + HF/HCI last												
ctl #1	4.3	0.8	4.2	11	5.2	<0.1	0.2	16	0.1	<0.5	13	54.8
ctl #2	2	0.3	1	5	2	0.2	0.1	0.3	< 0.1	0.6	0.5	12
Texturization + O3 & HF -based INES clean + HF/HCI last												
HF 2%	<1	<0.2	<1	4.3	<1	1.2	1.5	4.2	<0.1	<0.5	0.2	11.4
HF 2%, 40ppb Fe	<1	<0.2	<1	<1	<1	<0.1	<0.1	7.2	<0.1	<0.5	<0.1	7.2
HF 2%, 40ppb Fe & Cu	<1	<0.2	<1	<1	<1	<0.1	<0.1	0	<0.1	31	<0.1	31
HF 2% & HCI 1%, 40ppb Fe & Cu	<1	<02	<1	<1	<1	<0.1	<0.1	1.4	<0.1	<0.5	<0.1	1.4

As expected from deposition mechanisms:

- No impact of Fe in HF (verified @ 40ppb)
- Strong impact of Cu (20 and 40ppb)
- HCI 1% allows safe process (complexation of Cu)

	η (%)	Jsc (mA /cm²)	Voc (mV)	FF (%)
HF 2% - HCI 1%	18.4 (0.05)	35.1	686	76.4
BOE "2%"	18.0 (0.12)	35.2	680	75.7

• HF alternative might be possible but couple of trials with NH₄F (BOE, post HF dip in NH₄F) always showed detrimental impact on our HJ technology

Conclusion

More extensive runs are needed for consolidation of the performance numbers, but this work allows some recommendations:

- ✓ HF concentration: ≥ 2%
- ✓ Process time: 2 to 5 min
- ✓ Contamination (metals): HCl spike helps
- ✓ Rinse and Dry: no critical issue using industrial equipment
- ✓ Q-time: ≤ 30 min OK if the cleaning steps are reliable ... might be critical if poor

